Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
1.
Bioresour Technol ; 401: 130740, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677385

ABSTRACT

Microbial secondary metabolites (SMs) and their derivatives have been widely used in medicine, agriculture, and energy. Growing needs for renewable energy and the challenges posed by antibiotic resistance, cancer, and pesticides emphasize the crucial hunt for new SMs. Anaerobic ammonium-oxidation (anammox) systems harbor many uncultured or underexplored bacteria, representing potential resources for discovering novel SMs. Leveraging HiFi long-read metagenomic sequencing, 1,040 biosynthetic gene clusters (BGCs) were unearthed from the anammox microbiome with 58% being complete and showcasing rich diversity. Most of them showed distant relations to known BGCs, implying novelty. Members of the underexplored lineages (Chloroflexota and Planctomycetota) and Proteobacteria contained lots of BGCs, showcasing substantial biosynthetic potential. Metaproteomic results indicated that Planctomycetota members harbored the most active BGCs, particularly those involved in producing potential biofuel-ladderane. Overall, these findings underscore that anammox microbiomes could serve as valuable resources for mining novel BGCs and discovering new SMs for practical application.


Subject(s)
Oxidation-Reduction , Bacteria/metabolism , Bacteria/genetics , Ammonium Compounds/metabolism , Microbiota , Multigene Family , Phylogeny , Proteomics/methods , Metagenomics/methods , Anaerobiosis , Multiomics
2.
Plants (Basel) ; 13(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38674517

ABSTRACT

Tropospheric ozone (O3) pollution can affect plant nutritional quality and secondary metabolites by altering plant biochemistry and physiology, which may lead to unpredictable effects on crop quality and resistance to pests and diseases. Here, we investigated the effects of O3 (ambient air, Am; ambient air +80 ppb of O3, EO3) on the quality compounds and chemical defenses of a widely cultivated tea variety in China (Camellia sinensis cv. 'Baiye 1 Hao') using open-top chamber (OTC). We found that elevated O3 increased the ratio of total polyphenols to free amino acids while decreasing the value of the catechin quality index, indicating a reduction in leaf quality for green tea. Specifically, elevated O3 reduced concentrations of amino acids and caffeine but shows no impact on the concentrations of total polyphenols in tea leaves. Within individual catechins, elevated O3 increased the concentrations of ester catechins but not non-ester catechins, resulting in a slight increase in total catechins. Moreover, elevated O3 increased the emission of biogenic volatile organic compounds involved in plant defense against herbivores and parasites, including green leaf volatiles, aromatics, and terpenes. Additionally, concentrations of main chemical defenses, represented as condensed tannins and lignin, in tea leaves also increased in response to elevated O3. In conclusion, our results suggest that elevated ground-level O3 may reduce the quality of tea leaves but could potentially enhance the resistance of tea plants to biotic stresses.

3.
CNS Neurosci Ther ; 30(3): e14666, 2024 03.
Article in English | MEDLINE | ID: mdl-38468126

ABSTRACT

AIM: To explore the neuroprotective potential of hyperforin and elucidate its underlying molecular mechanisms involved in its therapeutic effects against vascular cognitive impairment (VCI). METHODS: The active compounds and possible targets of Hypericum perforatum L. that may be effective against VCI were found by network pharmacology in this research. We utilized bilateral common carotid artery occlusion (BCCAO) surgery to induce a VCI mouse model. Morris water maze (MWM) and Y-maze tests were used to assess VCI mice's cognitive abilities following treatment with hyperforin. To evaluate white matter lesions (WMLs), we utilized Luxol fast blue (LFB) stain and immunofluorescence (IF). Neuroinflammation was assessed using IF, western blot (WB), and enzyme-linked immunosorbent assay (ELISA). The effects of hyperforin on microglia were investigated by subjecting the BV2 microglial cell line to oxygen-glucose deprivation/reperfusion (OGD/R) stimulation. The expressions of VEGFR2 , p-SRC, SRC, VEGFA, and inflammatory markers including IL-10, IL-1ß, TNF-α, and IL-6 were subsequently assessed. RESULTS: The VEGFR2 /SRC signaling pathway is essential for mediating the protective properties of hyperforin against VCI according to network pharmacology analysis. In vivo findings demonstrated that hyperforin effectively improved BCCAO-induced cognitive impairment. Furthermore, staining results showed that hyperforin attenuated WMLs and reduced microglial activation in VCI mice. The hyperforin treatment group's ELISA results revealed a substantial decrease in IL-1ß, IL-6, and TNF-α levels. According to the results of in vitro experiments, hyperforin decreased the release of pro-inflammatory mediators (TNF-α, IL-6, and IL-1ß) and blocked microglial M1-polarization by modulating the VEGFR2 /SRC signaling pathway. CONCLUSION: Hyperforin effectively modulated microglial M1 polarization and neuroinflammation by inhibiting the VEGFR2 /SRC signaling pathways, thereby ameliorating WMLs and cognitive impairment in VCI mice.


Subject(s)
Cognitive Dysfunction , Phloroglucinol/analogs & derivatives , Terpenes , White Matter , Mice , Animals , Microglia , Neuroinflammatory Diseases , Tumor Necrosis Factor-alpha/metabolism , White Matter/metabolism , Interleukin-6/metabolism , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism
4.
Radiother Oncol ; 195: 110225, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38490491

ABSTRACT

PURPOSE/OBJECTIVE(S): To establish the distribution pattern of cervical lymph node metastasis (LNM) and propose optimized clinical target volume (CTV) boundaries specific to oral/ oropharyngeal squamous cell cancer (OSCC/OPSCC). MATERIALS/METHODS: 531 patients with pathologically confirmed OSCC/OPSCC were enrolled from January 2013 to June 2022. Patients were stratified into two groups based on the minimal distance from the lesion's edge to the body's midline: ≤1 cm or > 1 cm. The geometric center of cervical metastatic LN was marked on a template CT. LN distribution probability maps were established. The relationships between the LN distribution and consensus guidelines were analyzed to propose modifications for CTV boundaries specific to OSCC/OPSCC. RESULTS: A total of 1962 positive LNs were enrolled. Compared with the > 1 cm group, the ≤ 1 cm group has following feature tendencies: male smokers, younger, median organs, large gross lesion, infiltrative growth pattern, contralateral LNM. The most frequently involved level of LNM was ipsilateral II, but ipsilateral Ib had the highest involvement rate in the > 1 cm OSCC group. In addition, tongue cancer had a higher incidence of LN extranodal extension (ENE), which mainly distributes in ipsilateral level II. The skip metastasis was prone to from level III to Vb (3.5 %) in LN(+)/ENE (-), and level Ib to VIa (3.7 %) in LN(+)/ENE (+). Accordingly, we proposed the following modifications: 1. only including lateral and posterior margin of submandibular gland within 5 mm; 2. retracting posterior boundary of level II to front edge of levator scapula muscle, and descending the upper boundary to transverse process of C2 vertebra only for OSCC; 3. including posterior third of thyroglossal muscle or anterior edge of sternocleidomastoid muscle; 4. sparing level Va in case of only level II involvement; 5. including upper area of the thyroid cartilage plate in case of level Ib LN(+)/ENE (+); 6. sparing level VIIa is considered. CONCLUSION: This is the first description of LN topographic spread patterns for OSCC/OPSCC. Modified CTV for prophylactic irradiation was proposed to spare the organs at risk and minimize adverse effects.

5.
Clin Neurol Neurosurg ; 239: 108228, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38460429

ABSTRACT

OBJECTIVE: To evaluate the correlation between the monocyte-to-high-density lipoprotein cholesterol ratio (MHR) and intracranial atherosclerotic stenosis-related emergent large vessel occlusion (ICAS-ELVO) in acute ischemic stroke patients with endovascular thrombectomy. METHODS: Included in this study were 215 patients who underwent endovascular thrombectomy. They were randomly assigned to training and testing datasets. The patients in training dataset (n=128) were divided into ICAS group (n=65) and embolism group (n=63). MHR was compared between the two groups. According to the cut-off value, patients in testing dataset (n=87) were divided into low-MHR group (n=54) and high-MHR group (n=33). MHR was compared between the two groups. RESULTS: In training dataset, the proportion of male patients, diabetic patients and smokers in ICAS group was significantly higher than that in embolism group [(50 (76.9%) vs. 30 (47.6%), P=0.001; 29 (44.6%) vs. 14(22.2%), P=0.007; 37(56.9%) vs. 14 (22.2%), P=0.001; 37 (56.9%) vs. 14 (22.2%), P=0.001], while the mean age and the proportion of patients with coronary heart disease (CHD), stroke and atrial fibrillation were significantly lower [(64.74±9.13 vs. 71.38±13.34, P=0.001; 6 (9.2%) vs. 14 (22.2%), P=0.043; 12 (18.5%) vs. 22 (34.9%), P=0.035; 5 (7.7%)vs. 56 (88.9%), P<0.001)]. The laboratory test results showed that monocyte count was significantly higher and high-density lipoprotein level was significantly lower in ICAS group than those in embolism group (0.61±0.26 vs. 0.45±0.13, P=0.001; 1.17±0.28 vs. 1.37±0.27, P=0.001). MHR in ICAS group was significantly higher than that in embolism group (0.55±0.26 vs. 0.34±0.11, P=0.001). In training set, MHR was found to be an independent predictor for the occurrence of ICAS-ELVO with an adjusted OR of 2.39 (95%CI 1.29-4.48, P=0.006). ROC curve analysis showed that the area under the curve (AUC) of MHR was 0.8 (95% CI, 0.72-0.87, p < 0.001), with a sensitivity of 0.60 and a specificity of 0.873. The optimal cut-off value of the MHR level was 0.46. In testing dataset, the rate of ICAS-ELVO in higher quartile was significantly higher than that in the lower quartile (81.8% vs. 33.3%, P<0.001). Patients with a low MHR had a higher rate of cerebral hemorrhagic than those with a high MHR. CONCLUSION: MHR was associated with ICAS-ELVO in acute ischemic stroke patients with endovascular thrombectomy, and the higher level of MHR does benefit to differentiate ICAS from intracranial embolism, suggesting that MHR may prove to be an independent predictor for ICAS-ELVO.


Subject(s)
Embolism , Intracranial Arteriosclerosis , Ischemic Stroke , Stroke , Humans , Male , Lipoproteins, HDL , Ischemic Stroke/complications , Monocytes , Constriction, Pathologic , Stroke/complications , Intracranial Arteriosclerosis/complications
6.
Nanotechnology ; 35(23)2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38417160

ABSTRACT

Two emitters can be entangled by manipulating them through optical fields within a photonic cavity. However, maintaining entanglement for a long time is challenging due to the decoherence of the entangled qubits, primarily caused by cavity loss and atomic decay. Here, we found the entangled dark state between two emitters mediated by a dielectric cavity within epsilon-near-zero (ENZ) materials, ensuring entanglement maintenance over an extended period. To obtain the entangled dark state, we derived an effective model with degenerate mode modulation. In the dielectric cavities within ENZ materials, the decay rate of emitters can be regarded as 0, which is the key to achieving the entangled dark state. Meanwhile, the dark state immune to cavity loss exists when two emitters are in symmetric positions in the dielectric cavity. Additionally, by adjusting the emitters to specific asymmetric positions, it is possible to achieve transient entanglement with higher concurrence. By overcoming the decoherence of the entangled qubits, this study demonstrates stable, long-term entanglement with ENZ materials, holding significant importance for applications such as nanodevice design for quantum communication and quantum information processing.

7.
Neurologist ; 29(3): 146-151, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38323983

ABSTRACT

OBJECTIVES: Elevation of the systemic immune inflammation (SII) index and system inflammation response index (SIRI) is known to be associated with higher risk of stroke and all-cause death. However, no study has reported their correlation with early neurological deterioration (END) following recombinant tissue-type plasminogen activator (IV-rtPA) in acute ischemic stroke patients. The aim of this study was to explore the correlation of SII and SIRI with the risk of END after IV-rtPA. METHODS: Included in this study were 466 consecutive patients treated with IV-rtPA. SII and SIRI were calculated according to blood cell counts before IV-rtPA. Patients were divided into 3 groups based on trisectional quantiles according to SII and SIRI values. The risk of END was assessed by multivariate regression. The overall discriminative ability of SII and SIRI in predicting END was assessed by receiver operating characteristic curve analysis. RESULTS: Of the 466 included patients, 62 (13.3%) were identified as having END. Compared with the first tertile of SII, multivariable regression analysis demonstrated that patients were more likely to have END (odds ratio 2.54; 95% CI: 1.23-5.23) and poor outcome at 90 days (odds ratio 2.02; 95% CI: 1.06-3.86) in third tertile after adjustment for potential confounders. In addition, a cutoff value of 591.63 for SII was detected in predicting post-thrombolysis END with a sensitivity of 58.1% and a specificity of 64.6% (area under the curve 0.61; 95% CI: 0.54-0.69). CONCLUSIONS: Higher SII but not SIRI may prove to be a predictor for high risk of END and a poor functional outcome at 90 days after IV-rtPA.


Subject(s)
Inflammation , Ischemic Stroke , Thrombolytic Therapy , Tissue Plasminogen Activator , Humans , Male , Female , Ischemic Stroke/drug therapy , Aged , Middle Aged , Thrombolytic Therapy/adverse effects , Tissue Plasminogen Activator/administration & dosage , Inflammation/drug therapy , Fibrinolytic Agents/administration & dosage , Aged, 80 and over
8.
Acta Pharmacol Sin ; 45(5): 914-925, 2024 May.
Article in English | MEDLINE | ID: mdl-38253637

ABSTRACT

Metrnl is a secreted protein involved in neurite outgrowth, insulin sensitivity, immunoinflammatory responses, blood lipids and endothelial protection. In this study, we investigated the role of Metrnl in ischemic stroke. Fifty-eight ischemic stroke patients (28 inpatient patients within 2 weeks of onset and 30 emergency patients within 24 h of onset) and 20 healthy controls were enrolled. Serum Metrnl was measured by enzyme-linked immunosorbent assay. We showed that serum Metrnl levels were significantly reduced in both inpatient and emergency patient groups compared with the controls. Different pathological causes for ischemic stroke such as large artery atherosclerosis and small artery occlusion exhibited similar reduced serum Metrnl levels. Transient ischemic attack caused by large artery atherosclerosis without brain infarction also had lower serum Metrnl levels. Metrnl was correlated with some metabolic, inflammatory and clotting parameters. Reduced serum Metrnl was associated with the severity of intracranial arterial stenosis and the presence of ischemic stroke. In order to elucidate the mechanisms underlying the reduced serum Metrnl levels, we established animal models of ischemic stroke in normal mice, atherosclerotic apolipoprotein E-knockout mice and Metrnl-knockout mice by middle cerebral artery occlusion (MCAO) using intraluminal filament or electrocoagulation. We demonstrated that serum Metrnl levels were significantly lower in atherosclerosis mice than normal mice, whereas acute ischemic stroke injury in normal mice and atherosclerosis mice did not alter serum Metrnl levels. Metrnl knockout did not affect acute ischemic stroke injury and death. We conclude that reduced serum Metrnl levels are attributed to the chronic vascular pathogenesis before the onset of ischemic stroke. Metrnl is a potential target for prevention of ischemic stroke.


Subject(s)
Adipokines , Ischemic Stroke , Humans , Animals , Male , Ischemic Stroke/blood , Ischemic Stroke/genetics , Female , Middle Aged , Aged , Mice, Inbred C57BL , Mice , Infarction, Middle Cerebral Artery/blood , Mice, Knockout, ApoE
9.
Plant Cell Environ ; 47(3): 913-927, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38168880

ABSTRACT

Insect-induced plant volatile organic compounds (VOCs) may function as either direct defence molecules to deter insects or indirect defence signals to attract the natural enemies of the invading insects. Tea (Camellia sinensis L.), an important leaf-based beverage crop, is mainly infested by Ectropis obliqua which causes the most serious damage. Here, we report a mechanistic investigation of tea plant-derived VOCs in an indirect defence mechanism against E. obliqua. Parasitoid wasp Parapanteles hyposidrae, a natural enemy of E. obliqua, showed strong electrophysiological response and selection behaviour towards S-linalool and ß-ocimene, two monoterpenes with elevated emission from E. obliqua-damaged tea plants. Larvae frass of E. obliqua, which also released S-linalool and ß-ocimene, was found to attract both mated female or male Pa. hyposidrae according to gas chromatography-electroantennogram detection and Y-tube olfactometer assays. In a field setting, both S-linalool and ß-ocimene were effective in recruiting both female and male Pa. hyposidrae wasps. To understand the molecular mechanism of monoterpenes-mediated indirect defence in tea plants, two novel monoterpene synthase genes, CsLIS and CsOCS-SCZ, involved in the biosynthesis of S-linalool or ß-ocimene, respectively, were identified and biochemically characterised. When the expression of these two genes in tea plants was inhibited by antisense oligodeoxynucleotide, both volatile emission and attraction of wasps were reduced. Furthermore, gene expression analysis suggested that the expression of CsLIS and CsOCS-SCZ is regulated by the jasmonic acid signalling pathway in the tea plant.


Subject(s)
Acyclic Monoterpenes , Alkenes , Camellia sinensis , Moths , Wasps , Animals , Monoterpenes , Camellia sinensis/genetics , Cues , Moths/physiology , Insecta , Tea
10.
Rice (N Y) ; 16(1): 59, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38091105

ABSTRACT

Plastid ribosomal proteins play a crucial role in the growth and development of plants, mainly in the gene expression and translation of key genes in chloroplasts. While some information is known about the regulatory processes of plastid ribosomal proteins in various plant species, there is limited knowledge about the underlying mechanisms in rice. In this study, ethyl methanesulfonate (EMS) mutagenesis was used to generate a new mutant called wlp3 (white leaf and panicle3), characterized by white or albino leaves and panicles, which exhibited this phenotype from the second leaf stage until tillering. Furthermore, after a certain period, the newly emerging leaves developed the same phenotype as the rice variety ZH11, while the albino leaves of wlp3 showed an incomplete chloroplast structure and significantly low chlorophyll content. A transition mutation (T to C) at position 380 was identified in the coding region of the LOC_Os03g61260 gene, resulting in the substitution of isoleucine by threonine during translation. WLP3 encodes the ribosomal L18 subunit, which is localized in the chloroplast. Complementation experiments confirmed that LOC_Os03g61260 was responsible for the albino phenotype in rice. WLP3 has high expression in the coleoptile, leaves at the three-leaf stage, and panicles at the heading stage. Compared to the wild-type (WT), wlp3 exhibited reduced chlorophyll synthesis and significantly decreased expression levels of genes associated with plastid development. Yeast two-hybrid (Y2H) analysis revealed that WLP3 interacts with other ribosomal subunits, to influence chloroplast development. These results contribute to a better understanding of the underlying molecular mechanisms of chloroplast development and plastid gene translation.

11.
Opt Express ; 31(23): 37789-37801, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-38017901

ABSTRACT

The dielectric resonances of spherically symmetric micro/nano cavity in zero-index materials have been systematically studied. However, the resonance properties of other shaped dielectric cavities in zero-index materials remain unclear. Here, we theoretically investigate the electromagnetic resonances of the dielectric cavity with cylindrical symmetry in the epsilon-near-zero materials. This kind of cavity supports a set of resonances with strong light confinement, including dipole, quadrupole and higher-order modes with multiple nodes. Furthermore, there is a redshift of the resonance wavelength with an increment of its size, obeying a law as the function of diameter and height. Also, we find that the redshift will be slower for higher-order modes. Through the infinite refractive index contrast and extra degree of freedom, they should have potential application in the enhancement of light-matter interaction and multiple-functional light manipulation in the integrated optical systems.

12.
Anal Chim Acta ; 1279: 341838, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37827653

ABSTRACT

BACKGROUND: COVID-19 (coronavirus disease 2019) pandemic has had enormous social and economic impacts so far. The nucleocapsid protein (N protein) is highly conserved and is a key antigenic marker for the diagnosis of early SARS-CoV-2 infection. RESULTS: In this study, the N protein was first captured by an aptamer (Aptamer 58) coupled to magnetic beads (MBs), which in turn were bound to another DNA sequence containing the aptamer (Aptamer 48-Initiator). After adding 5'-biotinylated hairpin DNA Amplifier 1 and Amplifier 2 with cohesive ends for complementary hybridization, the Initiator in the Aptamer 48-Initiator began to trigger the hybridization chain reaction (HCR), generating multiple biotin-labeled DNA concatamers. When incubated with synthetic streptavidin-invertase-Ca3(PO4)2 hybrid nanoflower (SICa), DNA concatamers could specifically bind to SICa through biotin-streptavidin interaction with high affinity. After adding sucrose, invertase in SICa hydrolyzed sucrose to glucose, whose concentration could be directly read with a portable glucometer, and its concentration was positively correlated with the amount of captured N protein. The method is highly sensitive with a detection limit as low as 1 pg/mL. SIGNIFICANCE: We believe this study provided a practical solution for the early detection of SARS-CoV-2 infection, and offered a new method for detecting other viruses through different target proteins.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , COVID-19 , Humans , Biotin , Streptavidin , SARS-CoV-2/genetics , beta-Fructofuranosidase , COVID-19/diagnosis , DNA/genetics , Oligonucleotides , Nucleocapsid Proteins/genetics , Sucrose , Biosensing Techniques/methods , Limit of Detection
13.
J Hazard Mater ; 460: 132523, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37703741

ABSTRACT

Adsorbents play a vital role in responding to marine oil spills, yet effectively cleaning up viscous oil spills remains a technical challenge. Herein, we present a superhydrophobic oil-adsorbing felt prepared using melt-blown technology and functionally enhanced with a photoelectric composite CNT/PANI coating for effectively cleaning up high-viscosity oil spills. By virtue of its superior solar/Joule heating ability and thermally conductive fiber network, p-CNT/PANI@PP notably reduced crude oil viscosity and enhanced the oil diffusion coefficient within pores. Leveraging primarily solar heating and supplemented by Joule heating, p-CNT/PANI@PP demonstrates an impressive in-situ adsorption rate of up to 560 g/h for ultra-high-viscosity crude oil (c.a. 138000 mPa·s), alongside an adsorption capacity of 15.57 g/g. This measure enables efficient viscosity reduction and continuous day-and-night recovery of viscous crude oil, addressing the challenges posed by seasonal fluctuations in seawater temperature and adverse weather conditions. Moreover, a conveyorized collector integrated with an oil-adsorbing felt realizes continuous recovery of viscous oil spills with speed control to tackle varying thicknesses of oil film. Given the top-down material design, superior functionality, and applicability to applications, this work provides a comprehensive and feasible solution to catastrophic large-area viscous oil spills.

14.
Carbohydr Polym ; 320: 121240, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37659823

ABSTRACT

Starch chain-length distributions play an important role in controlling cereal product texture and starch physicochemical properties. Cooked foxtail millet texture and starch physicochemical properties were investigated and correlated with starch chain-length distributions in eight foxtail millet varieties. The average chain lengths of amylopectin and amylose were in the range of DP 24-25 and DP 878-1128, respectively. The percentage of short amylopectin chains (Ap1) was negatively correlated with hardness but positively correlated with adhesiveness and cohesion. Conversely, the amount of amylose intermediate chains was positively correlated with hardness but negatively correlated with adhesiveness and cohesion. Additionally, the amount of amylose long chains was negatively correlated with adhesiveness and chewiness. The relative crystallinity (RC) of starch decreased with reductions in the length of amylopectin short chains in foxtail millet. Pasting properties were mainly influenced by the relative length of amylopectin side chains and the percentage of long amylopectin branches (Ap2). Longer amylopectin long chains resulted in lower gelatinization temperature and enthalpy (ΔH). The amount of starch branched chains had important effects on the gelatinization temperature range (ΔT). These results can provide guidance for breeders and food scientists in the selection of foxtail millet with improved quality properties.


Subject(s)
Setaria Plant , Starch , Amylopectin , Amylose , Edible Grain
15.
Radiother Oncol ; 188: 109900, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37660752

ABSTRACT

BACKGROUND AND PURPOSE: We investigated the dynamics of eosinophil depletion during definitive concurrent chemo-radiotherapy (CCRT) and their association with the prognosis of stage Ⅱ-Ⅳa nasopharyngeal carcinoma (NPC) patients. MATERIALS AND METHODS: Fuzzy C-means algorithm (FCMA) assessed longitudinal trends in circulating eosinophil counts (CECs) of 1225 patients throughout the period of radical radiotherapy. The prognostic impact on patients' survival was evaluated with Kaplan-Meier analysis and Cox proportional risk model was used to determine the hazard ratio for adverse prognostic effects in grades of eosinophil depletion. The interactive effect of pre-treatment CECs and CCRT on outcomes was evaluated using HRs within the framework of Cox regression models. RESULTS: Three grades of eosinophil depletion, as defined by the interaction between dynamic types of CECs in the period of treatment and the value of CECs at the termination of treatment, significantly stratified the poor prognosis in terms of progression-free survival (PFS), overall survival (OS), and distant metastasis-free survival (DMFS) [1.57-fold (P = 0.001), 1.69-fold (P = 0.007), and 1.51-fold (P = 0.019) for G1, 2.4-fold (P < 0.001), 2.76-fold (P < 0.001), and 2.31-fold (P < 0.001) for G2, as compared with G0]. Furthermore, high levels of pre-treatment CECs acted as the strongest protective factor against severe depletion grade (G0 vs. G2, HR = 0.20, P = 0.005; G1 vs. G2, HR = 0.14, P < 0.001). However, compared with radiotherapy alone, the benefit from CCRT was attenuated in patients with high pre-treatment CECs. CONCLUSIONS: CECs reduction after treatment in patients with NPC may be helpful in the clinical setting to aid in assessing the prognosis for standard treatment of NPC.

16.
Sci Total Environ ; 900: 166236, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37572897

ABSTRACT

Recently, scholars have been increasing concerned about microplastics (MPs). Unfortunately, information is lacking on the spatial distribution patterns of MPs in coastal seas; therefore, our understanding of the extent of offshore MP contamination remains incomplete. MP distribution in the seawater and surface sediments of an aquaculture area (AA), artificial reef area (AR), and comprehensive effect area (CEA) in Haizhou Bay were investigated in this study. The results showed that the mean abundances of MPs in the surface, middle and bottom seawater were 6.98 ± 3.01 n/m3, 9.12 ± 3.07 n/m3 and 10.20 ± 2.41 n/m3, respectively, and that the abundance in the sediment was 3.09 ± 1.16 n/g. The MP abundance in the bottom seawater was significantly higher than that in the surface seawater (P < 0.05). The correlation among MPs at different depths was not significant, but MPs in most habitats showed a significant correlation. We discovered a significant correlation between the abundance of MPs in the CEA seawater and AR sediments, but not between that in the CEA sediments and AR sediments. MPs can be transported from surface seawater to deeper layers by natural deposition processes. The horizontal transport of MPs due to the coastal gulf current and regular semidiurnal tides lead to the correlations observed in of MP abundance among the AA, CEA, and AR. Migration of MPs from the CEA to the AR was primarily caused by the southern eddies in Haizhou Bay, while migration of MPs from the sediment to the seawater could be due to upwelling in the AR. This was also the main reason there was a lack of a correlation between the sediment from the AR and the seawater from the CEA. This work provides a theoretical and empirical foundation for MP transport and source tracking.

17.
J Transl Med ; 21(1): 396, 2023 06 18.
Article in English | MEDLINE | ID: mdl-37331977

ABSTRACT

Thyroid-associated ophthalmopathy (TAO) is the most common autoimmune inflammatory diseases of the orbit. The CD40-CD40L pathway has been regarded as a potential molecular mechanism contributing to the development and progression of TAO, and RNA aptamers with specific binding affinity to CD40 (CD40Apt) represents a promising inhibitor of the CD40-CD40L signaling in TAO treatment. In this study, CD40Apt was confirmed to specifically recognize mouse CD40-positive ortibtal fibroblast. Mouse orbital fibroblasts were isolated from TAO mice model orbital tissues and validated. In TGF-ß-induced orbital fibroblast activation model in vitro, CD40Apt administration inhibited TGF-ß-induced cell viability, decreased TGF-ß-induced α-SMA, Collagen I, Timp-1, and vimentin levels, and suppressed TGF-ß-induced phosphorylation of Erk, p38, JNK, and NF-κB. In TAO mice model in vivo, CD40Apt caused no significant differences to the body weight of mice; furthermore, CD40Apt improved the eyelid broadening, ameliorated inflammatory infiltration and the hyperplasia in orbital muscle and adipose tissues in model mice. Concerning orbital fibroblast activation, CD40Apt reduced the levels of CD40, collagen I, TGF-ß, and α-SMA in orbital muscle and adipose tissues of model mice. Finally, CD40Apt administration significantly suppressed Erk, p38, JNK, and NF-κB phosphorylation. In conclusion, CD40Apt, specifically binds to CD40 proteins in their natural state on the cell surface with high affinity, could suppress mouse orbital fibroblast activation, therefore improving TAO in mice model through the CD40 and downstream signaling pathways. CD40Apt represents a promising antagonist of the CD40-CD40L signaling for TAO treatment.


Subject(s)
Aptamers, Nucleotide , Graves Ophthalmopathy , Animals , Mice , Graves Ophthalmopathy/drug therapy , Graves Ophthalmopathy/genetics , Graves Ophthalmopathy/metabolism , CD40 Ligand/metabolism , NF-kappa B/metabolism , CD40 Antigens/metabolism , Orbit/metabolism , Transforming Growth Factor beta/metabolism , Collagen/metabolism , Fibroblasts/metabolism
18.
Front Immunol ; 14: 977587, 2023.
Article in English | MEDLINE | ID: mdl-36865531

ABSTRACT

Background: An association between Graves' disease (GD) and the gut microbiome has been identified, but the causal effect between them remains unclear. Methods: Bidirectional two-sample Mendelian randomization (MR) analysis was used to detect the causal effect between GD and the gut microbiome. Gut microbiome data were derived from samples from a range of different ethnicities (18,340 samples) and data on GD were obtained from samples of Asian ethnicity (212,453 samples). Single nucleotide polymorphisms (SNPs) were selected as instrumental variables according to different criteria. They were used to evaluate the causal effect between exposures and outcomes through inverse-variance weighting (IVW), weighted median, weighted mode, MR-Egger, and simple mode methods. F-statistics and sensitivity analyses were performed to evaluate bias and reliability. Results: In total, 1,560 instrumental variables were extracted from the gut microbiome data (p< 1 × 105). The classes Deltaproteobacteria [odds ratio (OR) = 3.603] and Mollicutes, as well as the genera Ruminococcus torques group, Oxalobacter, and Ruminococcaceae UCG 011 were identified as risk factors for GD. The family Peptococcaceae and the genus Anaerostipes (OR = 0.489) were protective factors for GD. In addition, 13 instrumental variables were extracted from GD (p< 1 × 10-8), causing one family and eight genera to be regulated. The genus Clostridium innocuum group (p = 0.024, OR = 0.918) and Anaerofilum (p = 0.049, OR = 1.584) had the greatest probability of being regulated. Significant bias, heterogeneity, and horizontal pleiotropy were not detected. Conclusion: A causal effect relationship exists between GD and the gut microbiome, demonstrating regulatory activity and interactions, and thus providing evidence supporting the involvement of a thyroid-gut axis.


Subject(s)
Gastrointestinal Microbiome , Graves Disease , Lactobacillales , Humans , Mendelian Randomization Analysis , Reproducibility of Results , Graves Disease/genetics , Clostridiales
19.
Article in English | MEDLINE | ID: mdl-36768127

ABSTRACT

The existence of interprovincial embodied carbon transfer not only makes it difficult to achieve carbon emission reductions but also exacerbates the inequity, inefficiency, and high costs of interprovincial carbon emission reduction rights and responsibilities. This paper uses multi-regional input-output analysis (MRIOA) to measure the interprovincial embodied carbon transfer in 2017, obtains the net carbon transfer between 30 provinces (municipalities and autonomous regions) and eight regions in 2017, and accounts for the interprovincial carbon compensation amount based on the carbon price in the national carbon market. This study finds that carbon transfer from economically developed provinces to less developed provinces still exists in China, and the overall distribution shows a spatial transfer pattern from south to north and from east to west, with the northwestern region bearing most of the carbon emission pressure for which it should receive corresponding financial compensation. As part of the process to achieve the "dual carbon" target, appropriate emission reduction policies should be formulated according to the characteristics of provincial carbon transfer and the principle of "who benefits, who compensates", and economically developed regions should give corresponding financial or technical compensation to less developed regions based on net carbon transfer. Compensation and support should be given to less developed regions based on net carbon transfer to prevent further regional development imbalances.


Subject(s)
Carbon Dioxide , Carbon , Carbon/analysis , China , Carbon Dioxide/analysis
20.
Mol Biol Rep ; 50(3): 1981-1991, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36536184

ABSTRACT

BACKGROUND: Fibroblast growth factors (FGFs) are key factors affecting diabetic wound healing. However, the FGF family's expression patterns in skin and wounds influenced by both diabetes and sex are still unknown. METHODS AND RESULTS: In this study, normal and Streptozotocin (STZ)-induced type 1 diabetic C57BL/6J male and female mice were used to study the FGF family's expression in non-wound skin and wounds. We found that the expression patterns of Fgfs were affected by sex in both normal and diabetic animals during wound healing. In normal control mice, sex difference had a limited effect on basal skin Fgf expressions. However, it significantly influenced Fgf expressions in wounds. Type 1 diabetes reduced basal and wound-induced skin Fgf expressions. Female mice had far lower wound-induced skin Fgf expressions in diabetic mice. In addition, sex differently influenced Fibroblast growth factors receptor (Fgfr) expression patterns of non-wound skin and wounds in both normal and diabetic mice. Moreover, female mice had a lower relative level of Fibronectin leucine-rich repeat transmembrane protein 2 (FLRT2) - a FGFR activation marker gene - in wound and blood plasma. Correspondingly, the wound areas of female animals were larger than that of male animals in the early stage of wound healing (less than 3-day injury). CONCLUSION: Our research shows that the FGF family have different expression patterns in normal and diabetic wound healing in mice of different sex. Additionally, we also provide the signatures of individual FGFs in diabetic wound healing, which deserve further investigation.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Mice , Female , Male , Animals , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Streptozocin/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/metabolism , Sex Characteristics , Mice, Inbred C57BL , Skin/metabolism , Receptors, Fibroblast Growth Factor/genetics , Receptors, Fibroblast Growth Factor/metabolism , Membrane Glycoproteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...